If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-30x-3600=0
a = 3; b = -30; c = -3600;
Δ = b2-4ac
Δ = -302-4·3·(-3600)
Δ = 44100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{44100}=210$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-210}{2*3}=\frac{-180}{6} =-30 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+210}{2*3}=\frac{240}{6} =40 $
| 5/3+7/6=x | | -8(x+7)=-3x-6 | | 7x3=180 | | 14=x=18 | | 2x-3/4=3x-2/5 | | 6g-7g=-g | | 21p^2=44p+32 | | (3/4)y=-(1/2) | | n1/5=9 | | 41+x=378 | | -6v-7=-7v | | 7x+8x-7=3(5x+3) | | 5z+6=-5+5z | | 4x+6=1x+6 | | x^2+26x-375=0 | | -7y=6y-8 | | 1/4(32t-12t=-8t+13 | | 10n=10n+4 | | 90x=400 | | 2x+100+90=180 | | 5x+8=13x-4 | | 6-3=-14+2a | | 2(x-3/4)=3/4 | | (8−2b)=4 | | (8x/7)=(5x+16) | | 7u-6u+5u-5u=10 | | 5+2x–40=12+x–8+x | | 2x/13=36 | | 5x−4=5(x−1)+10 | | p5=10440 | | 108+3x+4+8x-28=180 | | -4-1x=10 |