If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-31x+36=0
a = 3; b = -31; c = +36;
Δ = b2-4ac
Δ = -312-4·3·36
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-23}{2*3}=\frac{8}{6} =1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+23}{2*3}=\frac{54}{6} =9 $
| |8x+3|-2x=7 | | 3^{5x}+9=23 | | 10x-6=7x+93 | | 3x-4+5=-4x-2+4 | | 13y+48=8y-48 | | 3x=7=9x=22 | | -2q(4q-9)=q(-8q+15)-(-4q-6) | | 2a+99=135 | | −4(3−k)3=2(k+6)5 | | 3a+28=70 | | 37-8e=13 | | 35-9c=26 | | 40-7b=26 | | 21-6b=9 | | 3p-4(1p)=17 | | q+–169=–609 | | 3/10x=0 | | 5=q+14 | | F(.7)=6/2x-3 | | F(.5)=6/2x-3 | | 12x-1+4x+5=180° | | y+10=2y-5 | | Y^-1(x)=2x | | 4y=80y= | | 4x²+9=27 | | 15/5a/5/10=6/a | | 12=3a-3B | | 37=x^2+(3x-5)+(x+2)= | | 15-n=2n+9 | | 37=x+(3x-5)+(x+2) | | -2(-10-1y)-2y=20 | | 37=x^2+(3x-5)+(x+2) |