If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-33=0
a = 3; b = 0; c = -33;
Δ = b2-4ac
Δ = 02-4·3·(-33)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{11}}{2*3}=\frac{0-6\sqrt{11}}{6} =-\frac{6\sqrt{11}}{6} =-\sqrt{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{11}}{2*3}=\frac{0+6\sqrt{11}}{6} =\frac{6\sqrt{11}}{6} =\sqrt{11} $
| 7x-3x=2x+7-5X | | -8x2-19x+9=0 | | 1/2-1/5x=7/8x+7/2 | | 24k=360 | | 3s-30=36 | | 22=y/15+17 | | (X+4)/6=(x+6)/4 | | (-12)=5r+8 | | c/24=30 | | 5y+699-31-5+1-90=1-1-94-+-1887+9000 | | 10x5=1/4+24 | | 8–2x=40 | | 4x+0.25=0.5x | | 1/3(3)−4(0)=x | | X+1/x+5=3/6 | | X+(2x+49)+(x-13)=180 | | (−t)+20=25 | | 3(2/3x+6)=3x-9 | | 8+8q=11+7 | | 3+19x=39x+51 | | 2x+5/7=5 | | 4t−2=3t | | j÷10=16 | | n/2-20=5 | | -3/5j=-6 | | c/4=31 | | 2y+9y=y-3 | | j+-63=-4 | | -6n-20=-2n=+4(1-3n) | | (x+1)/6=5 | | -6(1-3b)=-20 | | 0=8x^2+12x-4896 |