If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-36x-180=0
a = 3; b = -36; c = -180;
Δ = b2-4ac
Δ = -362-4·3·(-180)
Δ = 3456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3456}=\sqrt{576*6}=\sqrt{576}*\sqrt{6}=24\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-24\sqrt{6}}{2*3}=\frac{36-24\sqrt{6}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+24\sqrt{6}}{2*3}=\frac{36+24\sqrt{6}}{6} $
| 4•(9x-5)=63-11 | | F(x)=-2x2 | | 5x+5+9=2•7+2x | | x+19.5^2=21^2 | | 180=4x+(2x-6) | | 1+15/2=2x-9/2x | | 5n+2/2=11 | | 0.13y+0.05(y+9000)=1530 | | -16p-4(2-6p)=6(p-4)-12 | | 2/3+b=6/5 | | 15+3=n | | 10/6=n+8/9 | | 4t^2-15t+25=0 | | 5x(10/11)=9 | | 4(3y+2)=24 | | x–2=40–5x | | (x+3)²+1=(x+1)²-1 | | 1,2n=0,5=1/5n | | 3p*4=28 | | X/4=x-24 | | r/2-45/2=3/5-2r/5 | | Y=x^2+7+100 | | 4+5x-2x=-11 | | 3.5x=2.73 | | 5+3x+x=-7 | | 17+8x-7x=0 | | 15=2w+6 | | 5.7x-3.1(x+5)=5.3 | | 0.1b=14 | | -11x=220 | | 9r+18-5r=2 | | 9z-4z+7=27 |