3x2-3x(2x/2)=8-16

Simple and best practice solution for 3x2-3x(2x/2)=8-16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x2-3x(2x/2)=8-16 equation:



3x^2-3x(2x/2)=8-16
We move all terms to the left:
3x^2-3x(2x/2)-(8-16)=0
We add all the numbers together, and all the variables
3x^2-3x(+2x/2)-(-8)=0
We add all the numbers together, and all the variables
3x^2-3x(+2x/2)+8=0
We multiply parentheses
3x^2-6x^2+8=0
We add all the numbers together, and all the variables
-3x^2+8=0
a = -3; b = 0; c = +8;
Δ = b2-4ac
Δ = 02-4·(-3)·8
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*-3}=\frac{0-4\sqrt{6}}{-6} =-\frac{4\sqrt{6}}{-6} =-\frac{2\sqrt{6}}{-3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*-3}=\frac{0+4\sqrt{6}}{-6} =\frac{4\sqrt{6}}{-6} =\frac{2\sqrt{6}}{-3} $

See similar equations:

| (4y-8)^2=32 | | -10+x+4+5=7x-5 | | 6(x+5)^2=120 | | 5(x-2)=4x-7 | | -2x-7=9x | | 4x+18=12x | | -m-2=-4m+4 | | 6h+12=4h-12 | | x/5+x/8=90 | | 7x-2(-3x+21)=114 | | v+6v-4v=6 | | 8z+20=2z-10 | | 9x^2-64x+88=0 | | 5/7=x+5/8 | | 2y+7y=9 | | 3m+12=2m+10 | | 1/4x-1=19x+19 | | 8x-20+6x+10=180 | | 5(15)=x | | 13k+3k+k-13k-2k=16 | | 7x+62=180 | | 12x+10(390-10x/12)=380 | | (2×-5/2+5)(-m3/2+9)=0 | | -7c+10c+9c=12 | | 9x2-6x+10=11 | | X-1/2-x-5/3=1+x | | -4x-5(-5x+18)=99 | | -2x2+24x-24=0 | | 10u-2u=8 | | 10=4+c | | -5x+2(6x-5)=-59 | | 13=s-2 |

Equations solver categories