If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-3x-8=0
a = 3; b = -3; c = -8;
Δ = b2-4ac
Δ = -32-4·3·(-8)
Δ = 105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{105}}{2*3}=\frac{3-\sqrt{105}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{105}}{2*3}=\frac{3+\sqrt{105}}{6} $
| -n-13/4=2n+11/4 | | 4^2-4x=4096 | | (x+88)+(x-13)+(x)=180 | | r^2+7r=144 | | 3x2+x+4=0 | | 64+5x=10x+64 | | -3x+37=x-15 | | 2(2y-7)=-22 | | k-21.6=47.9 | | -46=+x=23 | | 9t-3t-2t=2.4 | | 2^5x=19 | | X(4x+7)=-3 | | 6x+8=3x4 | | a^2-8a+9=0 | | 2x-100=6 | | 8(5c-1)-8=38c+8 | | X^2+y-6+5=0 | | 90n-27n=126 | | −5x+1=−6 | | -x+x^2=0 | | 2(2x-3)-2(3-5x)=6 | | 2x2+12x+10=0 | | -46=-5+x | | p^2-30p=0 | | 2(3x-1)-2(6-2x)=4 | | -22=-2(4x-5) | | 2u+12=80 | | -6(n+2)+15=-2n-13 | | 0-4x=12 | | 8x=5x+10 | | f(1)=2f(1-1) |