If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-42=0
a = 3; b = 0; c = -42;
Δ = b2-4ac
Δ = 02-4·3·(-42)
Δ = 504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{504}=\sqrt{36*14}=\sqrt{36}*\sqrt{14}=6\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{14}}{2*3}=\frac{0-6\sqrt{14}}{6} =-\frac{6\sqrt{14}}{6} =-\sqrt{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{14}}{2*3}=\frac{0+6\sqrt{14}}{6} =\frac{6\sqrt{14}}{6} =\sqrt{14} $
| -14=-2(2s-5) | | 2x/4+4x=72 | | -10=5(6+c) | | p(5)=-30 | | p+24-99=33 | | 1=g-91/6 | | 2+15^3x-8=11 | | 3+2e-1=3e+7 | | x+11-8x=20 | | 6)-3x+5=-3x-2 | | e+2e-1=3e+7 | | 25/6+t=41/2 | | 2/3x-4/5-1/6=4/5 | | -5.4-7.8d=-78.408 | | -18+y=-45 | | 9p+13=22 | | -8x-2x=-50 | | -2.4t+4.8=3.2t+0.6 | | 35(3x-7)=21(12x+4) | | 1/3(x+1)-3=9 | | g(-6)=15 | | -18-(-15)=x/8 | | -89*12=x | | -89⋅12=x | | -8x+8x-2x=-59 | | 5481=21x(21x+24) | | 18u-16=5u+36 | | -14b+20b=-18 | | 2(x+6)+3x=-4(x+9) | | -56=5x-6 | | 10n-6n-2n-2=4 | | 12z+6z-17z=9 |