If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-45x=0
a = 3; b = -45; c = 0;
Δ = b2-4ac
Δ = -452-4·3·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-45}{2*3}=\frac{0}{6} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+45}{2*3}=\frac{90}{6} =15 $
| h=(-4) | | 8(2x+6)=4(3x+6) | | 3(x-5)+2=-10 | | 15x-7=4×-18 | | 5(2x-10)=2(5x-10) | | -21x+8x-59=-23 | | 0.4x+2.5=0.2x–4 | | 9=d-64/3 | | –13.9j=1.92−13.7j | | 5x=-3+4 | | .50x+0.15(30)=38.5 | | 2u=4u-6 | | 2e+4=10+5e | | s/3+-6=-8 | | 10x^2-8=22 | | 3x=5/2=7/3 | | 1200X+600=1175x+700 | | 6+5(m+1)= | | 12x-11=8x-3 | | p=(0)=10 | | 156=41-w | | 8.0x=10 | | 4(x-1)=-3x-10 | | z+71/6=0 | | 4(j+2)-3j=6 | | 6.66=2(w+0.66) | | 5x-12=11x+30 | | 5y(y-10)=-5 | | -8q+20=-4q-20 | | 4/5x+1=-3 | | 8x+36=-20 | | 3x+10=3x-(28) |