If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4x-2=0
a = 3; b = -4; c = -2;
Δ = b2-4ac
Δ = -42-4·3·(-2)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{10}}{2*3}=\frac{4-2\sqrt{10}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{10}}{2*3}=\frac{4+2\sqrt{10}}{6} $
| -8+6x=-12+8x | | 3x=13=-75-8x | | x2-90x+1400=0 | | 3x+15=20−2x | | 4x+2=20-x | | 9w-117=2w+9 | | 3x-4(4.5)=9 | | 3/4x+16=28 | | (-1)(x)=4x^2+6x+12 | | (2)(x)=x^2-6x+1 | | (1/2)(x)=2x^2-3x-6 | | P(1/2)=2x^2-3x-6 | | 2(x+4)-(8-x)=5 | | 6y=-y | | x÷4-3=2 | | 42x²=50x²-20x | | x^2-110x+1500=0 | | (11x)+13=156 | | 2(x+4)-(8-×)=5 | | P(2)=x^2-6x+1 | | 3x+3=5x-4 | | x^2-160x+3000=0 | | 4(x+3)-2=34 | | X+4/9+x=6/5 | | F(4)=1/2x+9 | | -9+6X=-7x | | x2+4x-12= | | 2v+10=4v-24 | | 5w=13w-24 | | 3v+30=4v+19 | | 4u=2u+34 | | 12y=11y+7 |