If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4x=0
a = 3; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·3·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*3}=\frac{0}{6} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*3}=\frac{8}{6} =1+1/3 $
| X+x+5+x(.5)=0 | | 13x-4+5=2x+4+2x | | 11n+14=2 | | -2p+.4=1.6+p | | 8=2(r+1) | | 3(6x+2)=2x+6 | | 19.08=12.25+x×1.6 | | 19+4x=147 | | -5=-9p/3 | | −9x−65=4x9x654x | | 3(n-18)=-9 | | x^+2=6x+4 | | -15x-195=120+6x | | -5=-9p•3 | | -2x-8=7-3x | | (5z-7)(4+z)=0 | | 3x-7+(2x+4)=4x-6+x | | 15x+12-8x=7x-10 | | -5=-p+9/3 | | -2=g+1/3 | | 2x+2(2x+7)=200 | | x-2,17=6,78 | | 10(q+12)=10 | | 0.31*x=43 | | 8(3/4+x=) | | 8x+-64=16 | | 10x+3(3x-9)=3(x+1)+2 | | 8y-7y=20 | | 0.31x=43 | | x^2-10x=-7 | | 4(v+7)=16 | | 6m(12m-5)=0 |