If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-507=0
a = 3; b = 0; c = -507;
Δ = b2-4ac
Δ = 02-4·3·(-507)
Δ = 6084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6084}=78$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-78}{2*3}=\frac{-78}{6} =-13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+78}{2*3}=\frac{78}{6} =13 $
| (Q-6)x2=18 | | 36-x=175 | | (Q-6)x7=70 | | (U+1)x9=45 | | (Q-3)x2=14 | | 2+6x=13+x | | 42x^2-126x-100=0 | | 42x^2-126x+100=0 | | 5x-24=38 | | 17^x=1/17 | | 10x³+5x²-2x+1-6x³=2x²+4x³+1 | | 5x-3-2x=6 | | 3y^2-4y-240=0 | | 2(x-5)=3(2x-14) | | 4(2a+3=20 | | 27x^2-2x+9=0 | | 4x-4=14-104 | | (3x+3)*(7x-3)=99 | | 3-8x=-42-3x | | 5^2x-6+2/2x-2=1/x^2-4x+3 | | x^2-9x=1620 | | x^2-9x=162 | | x^2-9x-1620=0 | | 2,3979=1,2381x+2,2176 | | 2/x-5/4=3/2 | | X2+14x-32=0 | | x²+4x=96 | | x/3-x/2=10 | | (3x-2)^2=100 | | r2-10r=17 | | 5x^2-32x-48=0 | | |3y+6|=22 |