If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-50=2x^2-5x
We move all terms to the left:
3x^2-50-(2x^2-5x)=0
We get rid of parentheses
3x^2-2x^2+5x-50=0
We add all the numbers together, and all the variables
x^2+5x-50=0
a = 1; b = 5; c = -50;
Δ = b2-4ac
Δ = 52-4·1·(-50)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-15}{2*1}=\frac{-20}{2} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+15}{2*1}=\frac{10}{2} =5 $
| 2x(2x-10)=-15 | | 30=50-7(5-1x) | | 3x-6-2x=14 | | 0.4t+0.15=2t-2.65 | | 0.75x-5.3=0.45-0.4x | | 232=3y-64-y | | 2x+7x–8=6x+7 | | 24x=4x+14 | | -2(-8m-4)=4(2m-8) | | b-31-b+32=b | | x/3−1/2=7/6 | | n/3−1/2=7/6 | | 1/3x-10=3/4x-5 | | X-9+x-4=x+28 | | 14x+10x+20=-4x+34 | | 5(x-12)=45 | | 26(2x-13)=26(2x)-(13)= | | x+20+x=x50 | | 10x+90+45=180 | | W+w=w+33 | | 3(-8-7x)=3x-(x+1) | | T-1+t-43=t+48 | | –6n=–7n+10 | | X=14x+10 | | 8x+19=-3x-4 | | 2a2–12a+18=0 | | -4(-3u+9)-3u=3(u-8)-2 | | 3/4r-14=-3/8 | | 354w=w(95) | | 8(x-1)-3x=(2x-6) | | 6u+18=8(u+2) | | 5/(x-3)+1/x=5/(x-3) |