If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-5=0
a = 3; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·3·(-5)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*3}=\frac{0-2\sqrt{15}}{6} =-\frac{2\sqrt{15}}{6} =-\frac{\sqrt{15}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*3}=\frac{0+2\sqrt{15}}{6} =\frac{2\sqrt{15}}{6} =\frac{\sqrt{15}}{3} $
| C=1000-80x | | 2(7-8x)=32-2x | | (3x-14)=(2x+28) | | 8-x=92 | | y-3.7=-1.8 | | 8+x=92 | | a/5-3=-4 | | 5/9=6/2x+4 | | 13y=48+7y | | 4.99+0.65a=6.49+0.40 | | 6x+2(5x−9)=5(3x−4)+11 | | (x-3)^2+(x+5)^2=9 | | 2x+(x+3)+(x-2)=29 | | 72=2.4x | | 6(3a-4)+10=5(a-2)-(3a+4) | | 3y-5=3y-6 | | X/(x+2)-1/x-1=0 | | 300+6m=800+10m | | 25=35-3y | | (h-1/4)+(3h/5)=4 | | 12x=5x+63 | | -3(2d+5)=10 | | 2(k-5)=3k+5 | | 12q+2=6(2q+) | | N^3h-512h=0 | | 3y/2=1 | | (6x-)-x=-6(x+1) | | 5/8+v-7/16=0 | | -9x+10=11-12x | | 17x+1+20x-14=90 | | 3x–2(3x–2)=2(4–x)+3 | | 13=5-13+a1 |