If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-5x+2=0
a = 3; b = -5; c = +2;
Δ = b2-4ac
Δ = -52-4·3·2
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-1}{2*3}=\frac{4}{6} =2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+1}{2*3}=\frac{6}{6} =1 $
| -4.9x^2+0.6x+1=0 | | 4^(2*x)-6*(4^x)=7 | | Y-40x=48x | | 2(9x-1)+7(x+6=-60 | | 10x3+29x2+10x=0 | | x²+2x=15 | | 2×4x=16 | | x/4=500 | | √x^2-81=0 | | -4.9x^2-0.6x+1=0 | | 15-x=5,5 | | x/128=32 | | x(x+1)=10(2x+1)+56 | | s*5+23=118 | | 3x5^3x+1=18 | | 10x-(10+x^2)=0 | | 2m-(m+6)=4(m-3) | | 3+(x+1)=4-(4x-3) | | 14x-22+5=12x-8 | | 9/x=4 | | -27+8x=13-2 | | 3(x-6)+x=42 | | 4^x-3^{x+0.5}=3^{x-0.5}-2^{2x-1} | | 0.25(d-12=4 | | -67+46=43-15+40x+9x | | 15.8f-19.92-9.01=17.6+19.1f | | 15.8f–19.92–9.01=17.6+19.1f | | -t+12+15=-18+14t | | 3+12m=18+17m | | 17w=-20+19w | | 12.3z=11.8z-6.65 | | 12.3z=11.8z–6.65 |