If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-5x-12=0
a = 3; b = -5; c = -12;
Δ = b2-4ac
Δ = -52-4·3·(-12)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-13}{2*3}=\frac{-8}{6} =-1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+13}{2*3}=\frac{18}{6} =3 $
| -7+a-2a=6a-28 | | y=13+7(0) | | 5x=10x+4 | | 2x+3=3×-1 | | -6x+6=2x+-9 | | 7-0.15x=5.55 | | 5=5-5t-2t | | 11x+1=11x+2 | | 8r-5(-2+6r=2(1-7r) | | x+6/7=4/7 | | 5w^2+22w-21=0 | | 4|6-2x|+8=24 | | -2x^2+20x=48 | | 3x-5(x-3)=-6+3x-19 | | 1/4+1/2+h=-3/4 | | 4(3+c)+3=c+4 | | 3(2p-4)=2p-4 | | y=13+7(-1) | | 5=9(10+6t) | | 9c+4-5c=2(c-3) | | -3=x/1 | | 2x+37=-10 | | 10=9(4+3b) | | 5/1+c=5/4 | | 0=-5x^2+10x+15 | | 2(7-4x)-(2x-3)=1-2(x+1) | | n+1.50+2=9.25 | | 8+4w=6(5-2w) | | 5a/8=3/2 | | y/6+5=-13 | | 15/50=9/x | | (5x+35)=75 |