If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-60=0
a = 3; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·3·(-60)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*3}=\frac{0-12\sqrt{5}}{6} =-\frac{12\sqrt{5}}{6} =-2\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*3}=\frac{0+12\sqrt{5}}{6} =\frac{12\sqrt{5}}{6} =2\sqrt{5} $
| -3x(x-4)=-x+8 | | -z+10=-2z | | 6+8(x+1)=-10 | | (x+4)*(2-15)=2x+4*2-390 | | -9x+1=−80 | | –10−n=9n | | 7(a+1)-3a=5a+4(2a-1) | | 2+4m=7m-(3m+6) | | 9=-5-7x+5x | | 4+8v+6=18 | | 7+q/3=5 | | 4+v/2=10 | | 10r=9-9r | | -5x-35=-2x=31 | | 5x-3=3×+7 | | 2x=10=-26 | | 26+2x=x+56 | | 4a=16¼ | | -14=5n+21 | | g/2-4=16 | | -14a=-8 | | -8-3t=-2t | | 2x-4/(x-1)=10 | | |6n+15|-12=-3 | | -3p+10=-11 | | 3/8-1/4x=1/2x-1/3 | | 2c-5=c+42c−5=c+4 | | -2r+4=10 | | 1/2(x=4)=6 | | 9x+1=−80 | | 5{x+4}=5x-3 | | 59x-30/2-1=14 |