If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-64x+24=0
a = 3; b = -64; c = +24;
Δ = b2-4ac
Δ = -642-4·3·24
Δ = 3808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3808}=\sqrt{16*238}=\sqrt{16}*\sqrt{238}=4\sqrt{238}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-4\sqrt{238}}{2*3}=\frac{64-4\sqrt{238}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+4\sqrt{238}}{2*3}=\frac{64+4\sqrt{238}}{6} $
| 9x+4=8x+5= | | k÷0.32=2.2 | | 3x2-73x+24=0 | | h/3=7.2 | | 3x2-1x+24=0 | | 2u-1=9u | | s/9+9=10 | | (x61-)=-11 | | 1+2x=1-x | | 1+7d=5+5d | | 5(2x-1)-8x=7 | | x^2-2x+1=1.15 | | 12+b=23 | | 14−2k=8 | | 3x2-8x+24=0 | | 7x+3=-3x | | 8=4n-12 | | Y=0.327x+0.106 | | 2(c+3)=8 | | 4(3w+7)/3=9 | | 5(y+1)=3(3y+4 | | 2(x-1)^2-3=5 | | 7/11=s/77 | | 0.5n+1=365 | | 12+5b=23 | | 16c2−28c+9=-4c | | 5n+1=365 | | 5w+7=-10+9w | | (4x-1)(2x+3)=49 | | (x-27)=-7 | | 2(3w+6)/4=4 | | -c/5-23=-18 |