If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-6x+1=0
a = 3; b = -6; c = +1;
Δ = b2-4ac
Δ = -62-4·3·1
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{6}}{2*3}=\frac{6-2\sqrt{6}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{6}}{2*3}=\frac{6+2\sqrt{6}}{6} $
| 5x-3/4x-3=8x-7/3x-1 | | 5/3+4/5b=23/15 | | 5^2x=25^3 | | 56=3v+4v | | 5•(x-2)=7 | | -3x+6x-8=3(x-6)2 | | -(s+2)=4(s+1 | | -3b-7b=-13 | | S=3s/8=5/6 | | -1+1/3x=-12/15 | | j=-3 | | -3+6x-8=3(x-6)-2 | | 2(5-4)=2-4d | | −28r=4r^2 | | (2x−4)^−1=(x−4)^−1 | | 84+x*1=8x | | 10d+10=5(d+9) | | 84+x1=8x | | 4h+8h=114 | | x2-x+5=0 | | 81/29=n/29 | | 5x+2x-1+x-3=4x+22 | | -2x-6+8=10 | | 2h+8h+50=164 | | 10x^2+3=-144 | | -u+170=40 | | 64=4*a+44 | | 15m+-22=-7m+18 | | 201=-x+154 | | 3b=5 | | s×4+2=46 | | T=130.38+0.46m |