If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-6x-4=0
a = 3; b = -6; c = -4;
Δ = b2-4ac
Δ = -62-4·3·(-4)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{21}}{2*3}=\frac{6-2\sqrt{21}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{21}}{2*3}=\frac{6+2\sqrt{21}}{6} $
| -0.75x=36 | | -12+6x=6+5(x-2 | | -24=4u-4 | | -2(3x+9=24 | | 7-2(d-3)=23 | | X+1+6x=29 | | 2x−46=x4 | | 12+0.1x=0.25x | | 5(2y-3)=9(y+3)-42 | | 2x-5=x–1 | | 2) 2x-5=x–1 | | (6x-7)^2-25=0 | | (6x-7)^2=25 | | 2(x^2-36)=0 | | 4a-14=26 | | 6a-20=52 | | 8|6-4m|=12 | | 3x^2–27=0 | | x-2/4=2x+3/5 | | x/10+1=2 | | x10+1=2 | | 3/4n+7=18 | | 18=-6y | | x2+5=41 | | 4/9y+2/5y=-5/9-4/9 | | 4/9y+2/5=-5/9-4/9 | | 7x+20=6x-6 | | 3(3w+1)=9w+3 | | n/6+3=19 | | 9a-15=84 | | 2(3x-4)+2=1/3(36x-12)+2 | | (x-12)/5=4 |