If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-6x=10
We move all terms to the left:
3x^2-6x-(10)=0
a = 3; b = -6; c = -10;
Δ = b2-4ac
Δ = -62-4·3·(-10)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{39}}{2*3}=\frac{6-2\sqrt{39}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{39}}{2*3}=\frac{6+2\sqrt{39}}{6} $
| -86=-8y+2 | | v+-870=32 | | -7r=-8r+5 | | 4)2−8(−4+3x)=34 | | (x-4)²^=169 | | (x-4)^²=169 | | v/41=-30 | | 10r-8=6r+28 | | h-43=454 | | -3(x-9)^2+12=0 | | -11r+8=10r-13 | | m-345=594 | | 6^(-3y)=5 | | 12z-15=21 | | -43=n-297 | | g+46=376 | | y+344=833 | | (x-4)^=169 | | f+29=34 | | 5/4n=2/9 | | m-33=3 | | v/3=1.6 | | 8y=8y-54 | | X^2+8x+14=2x-7 | | 10x^2+20x-100=38 | | f=44-52 | | 52*28/2x=43x^2 | | 6/5=3/2y | | 18=2p | | 7+x/3-8=12 | | 3x^-147=0 | | c/16=2 |