If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-79x+24=0
a = 3; b = -79; c = +24;
Δ = b2-4ac
Δ = -792-4·3·24
Δ = 5953
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-79)-\sqrt{5953}}{2*3}=\frac{79-\sqrt{5953}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-79)+\sqrt{5953}}{2*3}=\frac{79+\sqrt{5953}}{6} $
| 3x2-78x+24=0 | | 3x2-77x+24=0 | | 3x2-76x+24=0 | | -5k—8k—16k=19 | | 3x2-75x+24=0 | | (x37-)=-35 | | s/3=-19 | | 3x2-74x+24=0 | | 3x2-87x+24=0 | | 13=-2x+9 | | 15x+4x-17x=6 | | m-31=307 | | 0.05x-0.19=0.06 | | -109.3=184.9t | | 6.2x-5=7.9x+3.5 | | 2x+1=9= | | -11t=-6t+15 | | x^2-12x-65=0 | | 19x-3x-11x+3x=16 | | q+14=68 | | 3c=243c= | | 17n-7n+2n-n-7n=20 | | (x20-)=-15 | | n^2+16n-35=0 | | 7x-x-x=5 | | 12+20=17x | | 6x{2}-11x-7=0 | | 7×2x=63 | | 14g-13g=19 | | 6x^{2}-11x-7=0 | | 14j-11j=12 | | 9x+1+9x+1=540 |