If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-7x-12=0
a = 3; b = -7; c = -12;
Δ = b2-4ac
Δ = -72-4·3·(-12)
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{193}}{2*3}=\frac{7-\sqrt{193}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{193}}{2*3}=\frac{7+\sqrt{193}}{6} $
| -23+5a=-13 | | -4u^2=48 | | 7y-30=5y | | 2a+1+2a+1+2a+1=3+6a | | 3c+12=9c | | 12(2x+5)= | | 5b-20=b+28 | | 7(y+10)=–14 | | 90+2x+3x+5=18 | | 7(c+9)=7c+64 | | 8x-45=3x+50 | | 3w+3.2=-1.6 | | 2x+9.5=x+7 | | 7x-33=6x-25 | | -38=-7x+4(x-5) | | 9x+10+12x-29=180 | | 2x+10+3x+1=180 | | 4(2x)=60–12x | | 2x+10+3x+1=90 | | 88+x-22+54=180 | | 0=x^2+-5x+-14 | | 80+p+37+p+11=180 | | 4(x-1)+4x-1=9 | | 3=4x+31 | | -114=3(5b-6)-3b | | -9y=5 | | 33+p+39+2p=180 | | 3/x=9/45 | | 3x^2+6-105=0 | | -157=-1+6(2-7x) | | 4x*4=122*4= | | 12y+48-4y=8y-48 |