If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-9-16=0
We add all the numbers together, and all the variables
3x^2-25=0
a = 3; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·3·(-25)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*3}=\frac{0-10\sqrt{3}}{6} =-\frac{10\sqrt{3}}{6} =-\frac{5\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*3}=\frac{0+10\sqrt{3}}{6} =\frac{10\sqrt{3}}{6} =\frac{5\sqrt{3}}{3} $
| A=x+12 | | -3(n+2=(-12) | | (-12)-(-2)(-4)/(-6)+(-6)-(+18)=c | | 7x^{2}-22x+3=0 | | 5/7=25/y, | | 3m^2-m+5=0 | | 5+6t=41 | | -29(-5)=-6n | | 5v÷0=125 | | -3(-2)-3(7)(-2)/(-4)=x | | 7^(4x)=23 | | 2p=4/9 | | (-2)-(+8)(-4)-(-2)(-6)=x | | -4b+-8b—-18b=-6 | | 3z-12z+6=-9 | | 18g-16g+5=7 | | (-4)=3x-11 | | 6d-2d+4d=16 | | P=107^k24 | | 2j+2j-3j+5j=18 | | 3x2–14x=5 | | 12t-7t+3t-t-3t=4 | | 4x-66+15=21 | | 3z-3z+4z=16 | | 13g+2g-14g+4g+g=12 | | a•—5=25 | | a•-5=25 | | -9x=(45-6x) | | 4x-2+2=18+2-4x=20 | | 0=2-72/x² | | -17j+-3j—18j=8 | | 108=x12 |