If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-96=0
a = 3; b = 0; c = -96;
Δ = b2-4ac
Δ = 02-4·3·(-96)
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{2}}{2*3}=\frac{0-24\sqrt{2}}{6} =-\frac{24\sqrt{2}}{6} =-4\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{2}}{2*3}=\frac{0+24\sqrt{2}}{6} =\frac{24\sqrt{2}}{6} =4\sqrt{2} $
| -x-1(X+3)=-4-10(2x-6) | | x^2+КХ+100=0 | | (x-5)(x+2)=(x-3)(x-1) | | (x-5)(x+2)=(x-3)(x-1 | | 6x-8(-2-5x)=-10 | | r/5-30=-22 | | 7(5-×)=4(x-11) | | (x-4)(2+3)=-2(-x-3) | | -4(y+2)=-8(1-y) | | 0.3x+-0.9=0 | | 2y-5=4y+15 | | 7x+3=-8-5x+2,5x | | 2x-7x-11=7x-7x+4 | | -3(1+6r)=14=r | | 2(x+5)-4x=6+20x-4x | | 78-12b=4b-20 | | 20-17x=20x-17 | | ^4√3^3x+2=51×17^3x-2 | | 9k^2+20k-22=0 | | (x-10)^2+100=150 | | 2x−8=8 | | -4+7x=8x+1 | | 6x2-66x+24=0 | | 1.44^x-10^(x-1)=0 | | 5(8.75h-2.50)=120 | | 4x−8=3x-8 | | 21x-15x=49 | | 3*(2x−1)=2x+13 | | x/5-x/7=7/15 | | (2x-3)(4x^2+6x+9)=0 | | 7x+19=69−3x | | (X+1)/3=(x-1)4 |