If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-96x+24=0
a = 3; b = -96; c = +24;
Δ = b2-4ac
Δ = -962-4·3·24
Δ = 8928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8928}=\sqrt{144*62}=\sqrt{144}*\sqrt{62}=12\sqrt{62}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-12\sqrt{62}}{2*3}=\frac{96-12\sqrt{62}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+12\sqrt{62}}{2*3}=\frac{96+12\sqrt{62}}{6} $
| -60=-4w | | 33x+36=33x+16 | | 3x2-95x+24=0 | | 2=9x+1= | | 10u+5=3u-8 | | 3x2-92x+24=0 | | 7(x+1)+2x=10x+5 | | 3,250=44(p+35) | | 3x2-91x+24=0 | | 3x2-90x+24=0 | | 3x2-89x+24=0 | | 3x2-88x+24=0 | | 9-6x=1x-5 | | 3x2-86x+24=0 | | Y=630(0.94)x | | 3x2-85x+24=0 | | 3x2-84x+24=0 | | 1/4=1/20x=+1 | | 3x2-83x+24=0 | | 3x2-82x+24=0 | | 3x2-81x+24=0 | | 2/3=1/4kk= | | 3x2-80x+24=0 | | 3x2-79x+24=0 | | 3x2-78x+24=0 | | 3x2-77x+24=0 | | 3x2-76x+24=0 | | -5k—8k—16k=19 | | 3x2-75x+24=0 | | (x37-)=-35 | | s/3=-19 | | 3x2-74x+24=0 |