If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-9x-6=0
a = 3; b = -9; c = -6;
Δ = b2-4ac
Δ = -92-4·3·(-6)
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{17}}{2*3}=\frac{9-3\sqrt{17}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{17}}{2*3}=\frac{9+3\sqrt{17}}{6} $
| 0.3x=-3 | | 7k-3=35 | | 3=2x/x-1 | | 25+11x=6x-55+15 | | 5r^2-17r-40=0 | | 2-5|5r-5|=-73 | | 6y+9−4y=−3 | | 7^x=2 | | 6x^2+3x-4= | | 8(5z-7)=-4(-10z=14) | | 4.44+0.08x=x | | 4.6y+9−4y=−3 | | (x-12+10)/100=200 | | 3x-12=7x-10 | | (5x-8)÷12=2 | | -8y+7=-33 | | 3(x-5)-2(x+4)=-5x+1 | | 10⋅(−6−9i)=10 | | 2x+8=24x-2 | | 40=3v-11 | | 4/x-5=5/2x | | -5y-10=-69 | | 14-2p=4p+5 | | 5v-13=37 | | p2–12p–13=0 | | 6t+4=2 | | 2(x-4)+3=12 | | 5/7(7y-21)=-10 | | y=6-(3.750-0.500)-2.375 | | 8=3x-5+4 | | 7x+8=360 | | 3/9p=18 |