If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=1323
We move all terms to the left:
3x^2-(1323)=0
a = 3; b = 0; c = -1323;
Δ = b2-4ac
Δ = 02-4·3·(-1323)
Δ = 15876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{15876}=126$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-126}{2*3}=\frac{-126}{6} =-21 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+126}{2*3}=\frac{126}{6} =21 $
| 52x+80=5(7x+28)-5x | | (x+5)=102 | | 124=x-39 | | -8x-4x=-36 | | 14g+-7g=-14 | | 5x-7=2(5x-7) | | 27+y=89 | | 3+13x=33 | | 65x70=180 | | 4(−4x-1)+x+3=44 | | (x+7)-3(2x-4)=-18 | | 14x+4(2-6x)=-5x-22 | | 18x+12=12x+18 | | -8c+8=-10 | | 4+5p=89 | | 7x-22=(2x-5)+3 | | 8-3x=129 | | (3x+18)=(4x+11) | | (1)/(5)(2x-1)=(1)/(3)(x+4) | | s(11-s)=245 | | 65=2(d+1)5d | | -17=16p-5 | | 4(x-9)=12x-4 | | 5x-13;x=7 | | 68x+2382x-84=49(50x+49 | | 20+-7z=55 | | 10x+17=x+2(14x-1) | | 8(5x-7)+5=31-x | | 3/4(4x-12)-x=2(x+3)+3 | | 241=27-v | | (5x+8)/2=2x+7 | | x/4=- |