If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=18x
We move all terms to the left:
3x^2-(18x)=0
a = 3; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·3·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*3}=\frac{0}{6} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*3}=\frac{36}{6} =6 $
| 4(2x+3)-7(4x+7)=13 | | 4=-2c+16 | | -8=4/v | | 9-2v=1 | | 1+3r=7 | | 1f−1=6 | | 1f−1)=6 | | 10=-4j | | 4(-0.5f−0.25)=6 | | 4(2x+3)+7=10 | | n/5=18/30 | | 9.6=x+3.6-x | | 40/10=x/30 | | 10/40=30/x | | 30/x=10/40 | | 4x+2(7+3x)=11 | | 27-18x=-16 | | w+3/5=5/6 | | 239=192-x | | -w+59=282 | | 22,389÷13=h | | 167=-x+295 | | x7-6=15 | | 4+2b=73 | | 10^(x2+3x)=200 | | 10^x2+3x=200 | | X^2-7x/6+1/3=0 | | n/6=30/36 | | w^2-20w=96 | | 3(2x+9)-6=12 | | 700-45w=450+15w | | 27=0.7x |