If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=35
We move all terms to the left:
3x^2-(35)=0
a = 3; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·3·(-35)
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{105}}{2*3}=\frac{0-2\sqrt{105}}{6} =-\frac{2\sqrt{105}}{6} =-\frac{\sqrt{105}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{105}}{2*3}=\frac{0+2\sqrt{105}}{6} =\frac{2\sqrt{105}}{6} =\frac{\sqrt{105}}{3} $
| 175+.65x=10 | | 6=4+11+x/3 | | -8v=8v-80 | | x/10+x/30=2 | | x=6.4;2X+3.1 | | 12x+4=4(2x+1) | | 2/5h+1/5h=-3^3/5 | | 27=12+p | | 8(x+5)-4x=14 | | Q^2-22q=0 | | 0.8w+0.12=1.72 | | 8x-11=772 | | (x2)-5=25 | | 6b+8=-5b | | 20x+7=-20x-7 | | 49=10−(10z−4) | | x+44=12 | | (1/2)600x2=19200 | | 5x16-x=-68;x=-14 | | 3t-t=13-4 | | (3x–1)(x+5)=0. | | 20x+2=10x+2 | | 11=–9r+38 | | 81=16-(6z-8) | | 2(-6y+7)=14 | | y+1.2=4.8 | | 9=71-m | | 5n-4=2n^2-11 | | 80=35+x | | -2x=18. | | -3=-5v+3(v-5) | | 43g^2+40g=0 |