If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=41
We move all terms to the left:
3x^2-(41)=0
a = 3; b = 0; c = -41;
Δ = b2-4ac
Δ = 02-4·3·(-41)
Δ = 492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{492}=\sqrt{4*123}=\sqrt{4}*\sqrt{123}=2\sqrt{123}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{123}}{2*3}=\frac{0-2\sqrt{123}}{6} =-\frac{2\sqrt{123}}{6} =-\frac{\sqrt{123}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{123}}{2*3}=\frac{0+2\sqrt{123}}{6} =\frac{2\sqrt{123}}{6} =\frac{\sqrt{123}}{3} $
| 6x-9=2x+16 | | 8x-12=35x+24 | | 3x2=22 | | 6x-16=-2,8 | | -6-7v=4v+65 | | 5x+12=11-10x | | 3,5x+18=25 | | 8y+4=3y-10 | | 6x2=11 | | 3(3s+7)=48 | | -3x+x=9 | | -2(5x+9)=2(-4x) | | 27x-6=14x-49 | | 175-11x=120 | | 75+x+135+x=360 | | 3x+6=14-2× | | H(x)=–3x2+48 | | 2(x+3)+12=6-2(3x-5) | | 3-5(2-x)=-2(x-1)-1 | | 7x-10=26-2x | | 2x(x+3)+12=6-2(3x-5) | | (4x+1)/6=3.5 | | 2x-4/3x+9=0 | | 9x+21=25+7x+18 | | 5a=a+21 | | 3u+6u=18 | | 75-x/6=68 | | 10y+1=6y+13 | | 55•x/55=7 | | 2x+4x=128 | | 2x+18=x+46 | | 6x-3(4-2x)+5=23-2x-3(2+5x) |