If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=45
We move all terms to the left:
3x^2-(45)=0
a = 3; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·3·(-45)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{15}}{2*3}=\frac{0-6\sqrt{15}}{6} =-\frac{6\sqrt{15}}{6} =-\sqrt{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{15}}{2*3}=\frac{0+6\sqrt{15}}{6} =\frac{6\sqrt{15}}{6} =\sqrt{15} $
| y+152=-3y+54 | | e2=99 | | 5-1/2(b-6)=4+10 | | 5x+134=179 | | d2=35 | | 1/5x+1/4=2(4/5x-1) | | c2=70 | | x^2−1.5x+0.26=0 | | b2=48 | | 4x+80=8x+16 | | a2=26 | | x/12=3=7 | | e2=144 | | d2=24 | | c2=17 | | b2=5 | | a2=14 | | x/7=-29+40 | | e2=121 | | d2=81 | | c2=64 | | b2=169 | | x=12+8x/13 | | -2t^2-20t-30=0 | | x-9=-2+3 | | 11^-3y=2 | | x/3+x/2=7/9 | | 3x-26=-2x+54 | | 3/4p=1/5 | | x^2-2x+384=0 | | 10=(3^x+5)-2 | | -7b−7=-6b |