If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=52
We move all terms to the left:
3x^2-(52)=0
a = 3; b = 0; c = -52;
Δ = b2-4ac
Δ = 02-4·3·(-52)
Δ = 624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{624}=\sqrt{16*39}=\sqrt{16}*\sqrt{39}=4\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{39}}{2*3}=\frac{0-4\sqrt{39}}{6} =-\frac{4\sqrt{39}}{6} =-\frac{2\sqrt{39}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{39}}{2*3}=\frac{0+4\sqrt{39}}{6} =\frac{4\sqrt{39}}{6} =\frac{2\sqrt{39}}{3} $
| 2-4x=-19 | | 4x^2+1+2x=0 | | x-2(x-4)=3(1-x) | | 20000=15000*1,0275^x | | 6(4k-5)=330 | | 2y+14=180 | | 36/11x²-6/11x-20/11=0 | | -0.5(x-4.2)=6.4* | | 2z/9+2=5 | | -12(X+2)=6(x+6) | | 1-p/7=2p/3 | | 8(u-13)=16 | | 3x^2-53x+232=0 | | 5=10t | | 0=(14x)-(11x+50) | | x=(14x)-(11x+50) | | 12=3(b−80) | | 9=n-48/4 | | u+13/4=8 | | u/4+10=13 | | 48x^2+3=0 | | 6÷13×26=x | | w(w+8)=105 | | x÷3+3=5 | | 5x+6x=100 | | (3x+10)+(4x-26)=180 | | 2x-17/2-(x-x+1/3)=12 | | 6.92+1.02=x | | 2x+(x)1.5=100 | | $3(4h−1)=−4(3h−5) | | 2k+7(8k+3)=-385 | | 3n=11=-20 |