If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=55
We move all terms to the left:
3x^2-(55)=0
a = 3; b = 0; c = -55;
Δ = b2-4ac
Δ = 02-4·3·(-55)
Δ = 660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{660}=\sqrt{4*165}=\sqrt{4}*\sqrt{165}=2\sqrt{165}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{165}}{2*3}=\frac{0-2\sqrt{165}}{6} =-\frac{2\sqrt{165}}{6} =-\frac{\sqrt{165}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{165}}{2*3}=\frac{0+2\sqrt{165}}{6} =\frac{2\sqrt{165}}{6} =\frac{\sqrt{165}}{3} $
| N=5n-32 | | 1x-6=6x+8 | | 6(-7x+1)=-86 | | M=−8r2+11r−6T=−7r2−9r+14 M+T=M+T= | | 10=x/3-4+x/6 | | 7-b=-8b | | 5.75=4.9t^2 | | 27f=80 | | 7c+7=8c | | 3/v=8/18 | | 8(z+4)-2(z-4)=3(z-1)+2(z-4) | | y+7-2=9 | | 2.5+0.15m=1+0.2m | | 1/2(4-10x)=7 | | v/6=840 | | V÷w=9 | | 6(x-6)-5(x-7=x+6 | | 180=3x-7+x+5 | | 3(2x-2)+4=7 | | 2x+4=-x-(-1x) | | 4.5+6r=17.5+4r | | 2/3x-1=-49/9+6x | | y-5.0=9.32 | | x=22x+8 | | x*30=63/5 | | x-37+37+300=360 | | 2/5b+5=20-1b | | 2x+10=-3x+35 | | 3x+5=(9x)/2 | | 1/2(16x-30)=1/3x-10+2 | | 7x+11=4x-4 | | .25y+4.5=-15 |