If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=8=83
We move all terms to the left:
3x^2-(8)=0
a = 3; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·3·(-8)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*3}=\frac{0-4\sqrt{6}}{6} =-\frac{4\sqrt{6}}{6} =-\frac{2\sqrt{6}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*3}=\frac{0+4\sqrt{6}}{6} =\frac{4\sqrt{6}}{6} =\frac{2\sqrt{6}}{3} $
| 3x+12=9x-4 | | 4.7y=-42.3 | | 3w+5=7w-15 | | d2+6d−35=0 | | 1/2+m=5/6 | | 3x-8+5x+10=80 | | 3x-12=9x-4 | | 6v+40=14v | | -1+36x=53x+3 | | 5x=140-2x | | m=17/3+16/3 | | 41(1/23)+1=x | | Y=-8/3x-6 | | 2+18x=41x+1 | | 2x+2x+1-48=0 | | .15p=p+150 | | 15p=p+150 | | 2x+13=x+13 | | 8x-3=6x+19 | | 4(x-10)=5x | | 4(x-10=5x | | (-4,-5);m=0 | | 2(y−82)=24 | | −6=−3/4x | | 7(s+5)=84 | | 17.95x+24=18.25x+18 | | 3=16–x | | |m-7|=|7-m| | | 24+6r=78 | | -30=-2(2x-5) | | 3(4y+2)-12=18 | | 90+60+30x=180 |