3x2=x2+25

Simple and best practice solution for 3x2=x2+25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x2=x2+25 equation:



3x^2=x2+25
We move all terms to the left:
3x^2-(x2+25)=0
We add all the numbers together, and all the variables
3x^2-(+x^2+25)=0
We get rid of parentheses
3x^2-x^2-25=0
We add all the numbers together, and all the variables
2x^2-25=0
a = 2; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·2·(-25)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2}}{2*2}=\frac{0-10\sqrt{2}}{4} =-\frac{10\sqrt{2}}{4} =-\frac{5\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2}}{2*2}=\frac{0+10\sqrt{2}}{4} =\frac{10\sqrt{2}}{4} =\frac{5\sqrt{2}}{2} $

See similar equations:

| 4x+9=51 | | 3u+9=60 | | x-4x13=4 | | 11x=x=50 | | (8z-11)(2-z)=0 | | 2/5x-7=12/5x-2x+13 | | 12t-(5t*t)=17 | | −24=-6-6x | | 3(7x+14=84 | | 1/2(8x-6)+2x=39 | | X=4x+4+4x+4+2.5x+8+2.5x+8 | | 32=-4-12w | | -3x+50=10x-9 | | 13u-6u=21 | | 2x111=5x+10 | | −40=24+8x | | 288-w=106 | | (-4,-4);m=5 | | X/0.4=2x+1.24 | | 267=215-v | | 216=-y+165 | | -12x-30=12x+30 | | 1/2(2x-4)=1/9(18x+9) | | 2x-6+2x-6+x=53 | | 5.75=2^k | | 6x-7+2x-3=62 | | 5x-7+5x-7+x=96 | | 3x+5-5x+1=180 | | 4u+12=-4(u-5) | | 3x+5+5x+1=180 | | 61+3x=4 | | 1x-2.5=4x-1 |

Equations solver categories