3x=1/x-4x+10

Simple and best practice solution for 3x=1/x-4x+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x=1/x-4x+10 equation:



3x=1/x-4x+10
We move all terms to the left:
3x-(1/x-4x+10)=0
Domain of the equation: x-4x+10)!=0
x∈R
We add all the numbers together, and all the variables
3x-(-4x+1/x+10)=0
We get rid of parentheses
3x+4x-1/x-10=0
We multiply all the terms by the denominator
3x*x+4x*x-10*x-1=0
We add all the numbers together, and all the variables
-10x+3x*x+4x*x-1=0
Wy multiply elements
3x^2+4x^2-10x-1=0
We add all the numbers together, and all the variables
7x^2-10x-1=0
a = 7; b = -10; c = -1;
Δ = b2-4ac
Δ = -102-4·7·(-1)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-8\sqrt{2}}{2*7}=\frac{10-8\sqrt{2}}{14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+8\sqrt{2}}{2*7}=\frac{10+8\sqrt{2}}{14} $

See similar equations:

| -4(5x-5)-4x=-7(2+x) | | 3w+12=−6 | | 9(q+8)=81 | | -7/5w=-42 | | 80=5(k+3) | | -8-b=-7(b+8) | | (2x-3)(x-6)=2x(x-6)+3x-8 | | 7x+2(-6x-6)=23 | | 9.2n+1.7=3.5+2.3n | | 15p+2=33 | | -71=y+1 | | 5(x+7)=1,495 | | 10x2=112 | | -4n+38=24 | | –5+x3=–2 | | 37=7n | | w÷2/3=5/6 | | 6g=–10+5g | | 5+3c=50 | | 5h=37.5 | | -5=-18+x | | x=3(-4)+2 | | 175m-75m+57300=60300-200m | | 15x+27=3(5x+9) | | 10x-13=2*(5x-7 | | 76=n+8 | | (-2/3)/z=-4/9 | | -3k=10 | | 5x=122+80 | | –3k=10−4k | | Vx8x= | | 3x+4(-3x+14)=137 |

Equations solver categories