3y(3y+4)=4(y+2)

Simple and best practice solution for 3y(3y+4)=4(y+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3y(3y+4)=4(y+2) equation:


Simplifying
3y(3y + 4) = 4(y + 2)

Reorder the terms:
3y(4 + 3y) = 4(y + 2)
(4 * 3y + 3y * 3y) = 4(y + 2)
(12y + 9y2) = 4(y + 2)

Reorder the terms:
12y + 9y2 = 4(2 + y)
12y + 9y2 = (2 * 4 + y * 4)
12y + 9y2 = (8 + 4y)

Solving
12y + 9y2 = 8 + 4y

Solving for variable 'y'.

Reorder the terms:
-8 + 12y + -4y + 9y2 = 8 + 4y + -8 + -4y

Combine like terms: 12y + -4y = 8y
-8 + 8y + 9y2 = 8 + 4y + -8 + -4y

Reorder the terms:
-8 + 8y + 9y2 = 8 + -8 + 4y + -4y

Combine like terms: 8 + -8 = 0
-8 + 8y + 9y2 = 0 + 4y + -4y
-8 + 8y + 9y2 = 4y + -4y

Combine like terms: 4y + -4y = 0
-8 + 8y + 9y2 = 0

Begin completing the square.  Divide all terms by
9 the coefficient of the squared term: 

Divide each side by '9'.
-0.8888888889 + 0.8888888889y + y2 = 0

Move the constant term to the right:

Add '0.8888888889' to each side of the equation.
-0.8888888889 + 0.8888888889y + 0.8888888889 + y2 = 0 + 0.8888888889

Reorder the terms:
-0.8888888889 + 0.8888888889 + 0.8888888889y + y2 = 0 + 0.8888888889

Combine like terms: -0.8888888889 + 0.8888888889 = 0.0000000000
0.0000000000 + 0.8888888889y + y2 = 0 + 0.8888888889
0.8888888889y + y2 = 0 + 0.8888888889

Combine like terms: 0 + 0.8888888889 = 0.8888888889
0.8888888889y + y2 = 0.8888888889

The y term is 0.8888888889y.  Take half its coefficient (0.4444444445).
Square it (0.1975308642) and add it to both sides.

Add '0.1975308642' to each side of the equation.
0.8888888889y + 0.1975308642 + y2 = 0.8888888889 + 0.1975308642

Reorder the terms:
0.1975308642 + 0.8888888889y + y2 = 0.8888888889 + 0.1975308642

Combine like terms: 0.8888888889 + 0.1975308642 = 1.0864197531
0.1975308642 + 0.8888888889y + y2 = 1.0864197531

Factor a perfect square on the left side:
(y + 0.4444444445)(y + 0.4444444445) = 1.0864197531

Calculate the square root of the right side: 1.042314613

Break this problem into two subproblems by setting 
(y + 0.4444444445) equal to 1.042314613 and -1.042314613.

Subproblem 1

y + 0.4444444445 = 1.042314613 Simplifying y + 0.4444444445 = 1.042314613 Reorder the terms: 0.4444444445 + y = 1.042314613 Solving 0.4444444445 + y = 1.042314613 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.4444444445' to each side of the equation. 0.4444444445 + -0.4444444445 + y = 1.042314613 + -0.4444444445 Combine like terms: 0.4444444445 + -0.4444444445 = 0.0000000000 0.0000000000 + y = 1.042314613 + -0.4444444445 y = 1.042314613 + -0.4444444445 Combine like terms: 1.042314613 + -0.4444444445 = 0.5978701685 y = 0.5978701685 Simplifying y = 0.5978701685

Subproblem 2

y + 0.4444444445 = -1.042314613 Simplifying y + 0.4444444445 = -1.042314613 Reorder the terms: 0.4444444445 + y = -1.042314613 Solving 0.4444444445 + y = -1.042314613 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.4444444445' to each side of the equation. 0.4444444445 + -0.4444444445 + y = -1.042314613 + -0.4444444445 Combine like terms: 0.4444444445 + -0.4444444445 = 0.0000000000 0.0000000000 + y = -1.042314613 + -0.4444444445 y = -1.042314613 + -0.4444444445 Combine like terms: -1.042314613 + -0.4444444445 = -1.4867590575 y = -1.4867590575 Simplifying y = -1.4867590575

Solution

The solution to the problem is based on the solutions from the subproblems. y = {0.5978701685, -1.4867590575}

See similar equations:

| 3x(2-6)+12=4y+3 | | sin(45)=.25/x | | 1/4*1(1/2) | | 15a=80 | | -(x/2)=12 | | -4x+9x=45 | | 6x-19=-13 | | cos(45)=.25/x | | 2n/3-5/7=41/21 | | Y=kx^2-5x+7 | | 1/4*1/1/2 | | 3y(2-6)+12=4x+3 | | 19.25/2.50 | | 3(n-4)=11 | | 16y-8y=40 | | p+2=6+2p | | (a^2+b^2)-4(a+b)+4=0 | | 39=q-32 | | 12(z+4)-4(z-1)=4(z-3)+3(z-4) | | 3y+6=4x-5forx | | 15y+20=4+12y | | 42-6x=18 | | v+7=60 | | 3y+6=4x-5 | | g+22=60 | | 3(x+4)+3(y+-4)=14 | | 6(3x-8)-6=6(x-2)+30 | | 12/2x-18/x | | 5+4=20x | | 2x^2+-x+-1=0 | | (x^2-36)(x^2+8x+15)=0 | | 9z=4z+60 |

Equations solver categories