3y+4/y-1=2+7/y-1

Simple and best practice solution for 3y+4/y-1=2+7/y-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3y+4/y-1=2+7/y-1 equation:



3y+4/y-1=2+7/y-1
We move all terms to the left:
3y+4/y-1-(2+7/y-1)=0
Domain of the equation: y!=0
y∈R
Domain of the equation: y-1)!=0
y∈R
We add all the numbers together, and all the variables
3y+4/y-(7/y+1)-1=0
We get rid of parentheses
3y+4/y-7/y-1-1=0
We multiply all the terms by the denominator
3y*y-1*y-1*y+4-7=0
We add all the numbers together, and all the variables
-2y+3y*y-3=0
Wy multiply elements
3y^2-2y-3=0
a = 3; b = -2; c = -3;
Δ = b2-4ac
Δ = -22-4·3·(-3)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{10}}{2*3}=\frac{2-2\sqrt{10}}{6} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{10}}{2*3}=\frac{2+2\sqrt{10}}{6} $

See similar equations:

| -9(y-8)=-5y+48 | | -3(-7v+8)-8v=4(v-2)-1 | | 5x-23=9(x-7) | | -3(w-8)=-9w-30 | | 5-4k=3k-2 | | 32=2v+4(v+5) | | 6d-(11÷2)=2d-(13÷2) | | -12=-6u+2(u-2) | | 3(x+2)-12=4(x+1) | | 8(w-8)-2w=-10 | | 8x–7.6=4.23 | | 2(2x-1)=3(x+3) | | 36=-4x+6(x+8) | | 4-(2/3)x=2 | | .7=(x-100)/15 | | 33=3(u-3)+3u | | 7{y-9/7}=-3 | | x-4/6=2/9 | | 2(4x+3)+9x=30-x | | 2(v+2)-v=3(v-1)=9 | | 9w-9-2=-7w+7w-8 | | 5/3u-3/2=-3/2u-1 | | 6x-)3x+8)=16 | | -2=5-n+8n | | x-13=5x-39 | | 2/5v-2/3=-1/4 | | -2/4+n/4=-1 | | -6(y+1)=-3(2y-4)+4y | | -2y-48=9(y-9) | | -.03(10x+2)=-.06-3x | | 2(v+4)-5v=-4 | | 4(s-12)=8 |

Equations solver categories