If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y-4/5y+6=0
Domain of the equation: 5y!=0We multiply all the terms by the denominator
y!=0/5
y!=0
y∈R
3y*5y+6*5y-4=0
Wy multiply elements
15y^2+30y-4=0
a = 15; b = 30; c = -4;
Δ = b2-4ac
Δ = 302-4·15·(-4)
Δ = 1140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1140}=\sqrt{4*285}=\sqrt{4}*\sqrt{285}=2\sqrt{285}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{285}}{2*15}=\frac{-30-2\sqrt{285}}{30} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{285}}{2*15}=\frac{-30+2\sqrt{285}}{30} $
| 6n+11=15 | | 210=10(s-35)+90 | | -3*b-8*b+4=-(b+4)+2 | | P(7,-11)r=-12 | | 2a+3÷4=7÷8 | | P(0,0)r=25 | | x*0.4+132=x*0.4+226 | | (w²-w-6)(5w+20)=0 | | x*0.4+132=x*0.4+226.32 | | x=(4/52)*(3/51)*(2/50)*(1/49) | | (4/52)*(3/51)*(2/50)*(1/49)=x | | P(-9,-7)r=-6 | | 5(x+1)+3(x-1)=10 | | x÷3+1=x÷8+1÷11 | | 3(x-8)-2=-7(x+8) | | x*2.4=x*0.4+132 | | P(0,0)r=-8 | | 5+5r=6r | | -7+4m=3m | | x/3+1=x/8+1/11 | | -5s+2=-6s | | 18x-3=4x+11 | | 23–5x=43 | | 5-2a=a-4 | | 13=45-8(-1-5w) | | 18x-3(2x-6)=6 | | -3(4x+4)=-6(2+2x) | | 6(x+3)+x=7x+2=1 | | 6x+20=3x+2 | | 6x+20x=3x+2 | | 5x–19=16 | | 5=r-84/3 |