3y-4/y-1=7/y-1+2

Simple and best practice solution for 3y-4/y-1=7/y-1+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3y-4/y-1=7/y-1+2 equation:



3y-4/y-1=7/y-1+2
We move all terms to the left:
3y-4/y-1-(7/y-1+2)=0
Domain of the equation: y!=0
y∈R
Domain of the equation: y-1+2)!=0
We move all terms containing y to the left, all other terms to the right
y+2)!=1
y∈R
We add all the numbers together, and all the variables
3y-4/y-(7/y+1)-1=0
We get rid of parentheses
3y-4/y-7/y-1-1=0
We multiply all the terms by the denominator
3y*y-1*y-1*y-4-7=0
We add all the numbers together, and all the variables
-2y+3y*y-11=0
Wy multiply elements
3y^2-2y-11=0
a = 3; b = -2; c = -11;
Δ = b2-4ac
Δ = -22-4·3·(-11)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{34}}{2*3}=\frac{2-2\sqrt{34}}{6} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{34}}{2*3}=\frac{2+2\sqrt{34}}{6} $

See similar equations:

| 2(6g+3)=126 | | 12n-14=8n-2 | | 6a+7=8a+3 | | 7h-4=3h+8 | | 7x-10=9x+11 | | -2x(5x-3)=5x | | 3+x7=7 | | 8x+5x=21-31 | | 3/2x+1/x+1=0 | | x-3/x=0.4 | | x-3=0.4x | | 6x-11=-4x+9 | | 4.2×3x=21 | | 37+4x=46+1 | | X-10x-7x=16x | | x=0.05*(10000+x) | | 42+11p=9 | | 2x=-13+5(4x-1) | | ((x½+x½)²=63x–1 | | 5x+4(-5x+2)=-22 | | 3x+4(2x-2)=47 | | 3x-2(4x-1)=2-6x | | x-2(x+5)=4 | | 4(x-15)=x-15 | | 9x(x+8)-4(x+8)=0 | | 6+4a=5 | | 5x/3=1/4 | | 5(x+1)-5x+5(x-1)=105 | | 5(x+1)-5(x)+5(x-1)=105 | | x/(x+4)=6/9 | | 9x-20=-3x+16 | | z/5=3/2 |

Equations solver categories