If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+25y+8=0
a = 3; b = 25; c = +8;
Δ = b2-4ac
Δ = 252-4·3·8
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-23}{2*3}=\frac{-48}{6} =-8 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+23}{2*3}=\frac{-2}{6} =-1/3 $
| s/2−13=-12 | | 3(3x-1)=5x+13 | | s2−13=-12 | | 3m=742 | | (500)=200+50(t-70) | | 3n+22=88 | | 5/2x-3=0 | | 4(2x-3=6-(3-2x) | | 1/12=5.4/x | | c/5+8=11 | | 10=4+-2d | | 13y-1=62 | | 15=6x+x(x-13) | | r/2+4=6 | | 3x-5=-4(6-2x) | | 15=6x+x(x-13 | | -10d=20-8d | | x2–1x–90=0 | | -4y^2+19y=21 | | 40+15c=115 | | C=100+5x | | d÷0.2=3d+2.1 | | -g=20-2g | | -4x-28=-28-4x | | -8(f+89)=-64 | | 25=10a | | 3(6x-7)=0.5(4x-2) | | 20b=14 | | 3(n+10)=-18 | | -50x+600=200 | | 8b-15=145 | | 8-(3+b)=b-9 |