If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+30y=0
a = 3; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·3·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*3}=\frac{-60}{6} =-10 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*3}=\frac{0}{6} =0 $
| 4(x-8)(x-8)=576 | | 9x+5=4x+23 | | -2-13.8=8x-6x+1 | | 9-2.1x=-(x+0.9) | | 6k=1=28 | | -d+0.8=7 | | -d+4/5=1/7 | | 3x+20=62 | | 5.6=3.1–12.5|1–0.8x| | | 4a-9=3a-2 | | 49t+34=59 | | 7k-30=15+4k | | 25x-11x+7x=x-40 | | 73+3y=72 | | 15y-10=-14y+13 | | 7x+4=5x+0 | | 8-6(-35x)=56 | | 4.6-x=6.5 | | 1/7+2x-1=x-1 | | 34y+5=36 | | 48y+32=94 | | 0=-0,5*x+1 | | 4/5x-1=3/4x | | 1/2x+3=3/5x+3 | | 1.08-x=8 | | (3x+1)^1/4=2 | | 1/4x+1/2=1/3x | | (3/4)y+2y=1/2+(4y-3) | | 32t-16t^2+13=0 | | 7÷x+4=42÷12 | | -4=3-7u | | 5x/4-x-1/2=x-1/3 |