3y2+3=(4y2-2)

Simple and best practice solution for 3y2+3=(4y2-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3y2+3=(4y2-2) equation:



3y^2+3=(4y^2-2)
We move all terms to the left:
3y^2+3-((4y^2-2))=0
We calculate terms in parentheses: -((4y^2-2)), so:
(4y^2-2)
We get rid of parentheses
4y^2-2
Back to the equation:
-(4y^2-2)
We get rid of parentheses
3y^2-4y^2+2+3=0
We add all the numbers together, and all the variables
-1y^2+5=0
a = -1; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-1)·5
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*-1}=\frac{0-2\sqrt{5}}{-2} =-\frac{2\sqrt{5}}{-2} =-\frac{\sqrt{5}}{-1} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*-1}=\frac{0+2\sqrt{5}}{-2} =\frac{2\sqrt{5}}{-2} =\frac{\sqrt{5}}{-1} $

See similar equations:

| -5x-8(7-3x)=4x+19 | | 6−3x=5x−10x+2 | | y/7=-30 | | -4x+10=-10x+40 | | 6(x+20)=`168 | | x/19=-25 | | 2b+4b=11 | | 21−3h=3 | | n−227=–141 | | 2x+4x-272=0 | | 10y+8=9y+12 | | y/7=-18 | | (21+X)x2=27 | | (x–9)=–4 | | 5t−4t=18 | | x/9+3=16 | | 4b+6b=20 | | 2x-3=45x+135 | | (2x-5)(4x-8)=0 | | y=7(1/3)+6 | | 143p+22=-4001 | | -5x-56+24x=4x+19 | | 143p+220=-4001 | | x*2-5=29 | | 07x*x=1000 | | 7x+6=4x+5 | | x+5/4=1 | | 4x-5(2x+1)=-6x-5 | | 60-y=12 | | 1.43p*1000+2.2*1000=-4.001*1000 | | 4u=u+36 | | 8y+13=7y+-11 |

Equations solver categories