If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+6y-9=0
a = 3; b = 6; c = -9;
Δ = b2-4ac
Δ = 62-4·3·(-9)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-12}{2*3}=\frac{-18}{6} =-3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+12}{2*3}=\frac{6}{6} =1 $
| 3.5/9.1=x/3.5 | | 7x+4+12x=16x+16 | | 2x+11+7x=20 | | -4+9x=-2x+14 | | 7x+2x=50 | | |k+9|=8 | | 5x+275=x(30 | | –7g+9=–6g | | -4x9x=-2x+14 | | 5=4r-7 | | 11.5(n+6)=8n | | 12x+112=180 | | 8-(3x)=17 | | 32-64m=2m+32 | | -6(5n+1)-7n=-6n-37 | | 9w^2+18w=0 | | X^4+11x^2=3x^2+128 | | 2x+3=2x+7-2x | | -2|5w-7+9=-7 | | 2x²-4x²=16 | | 1/3(x-33)=12 | | 4(5x-3)=7(2x-3) | | (3y-1)/(4)=11 | | 17x+8x+x=180 | | 2p/9-5p/3=5 | | n/n+1=4/3 | | 7/5+4/5x=89/30+7/6x+1/6 | | 42x5=9 | | 2y+3=6-3y | | 5w^2-3w-224=0 | | 2/7x=-6.5 | | 1.3y-1.2=2.4y |