If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+8=72
We move all terms to the left:
3y^2+8-(72)=0
We add all the numbers together, and all the variables
3y^2-64=0
a = 3; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·3·(-64)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*3}=\frac{0-16\sqrt{3}}{6} =-\frac{16\sqrt{3}}{6} =-\frac{8\sqrt{3}}{3} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*3}=\frac{0+16\sqrt{3}}{6} =\frac{16\sqrt{3}}{6} =\frac{8\sqrt{3}}{3} $
| 6*7=2x+11 | | 5m2+18=13 | | x(2x+3)-1=0 | | 3x²-3x-2=0 | | (x×4)-(x÷4)=135 | | z2-13=0 | | 2x²+3x-1=0 | | 2n+6=48n= | | x^2+10x-2250=0 | | 2(2x+8)=13 | | 3/4=z/20 | | (x+2)(x-1,35)-3x=0 | | 4e+2=-6 | | 5x^2+45x-49860=0 | | 6d-7=-25 | | (x+2)(x-1,35)-3=0 | | 2x+5x=-13 | | 12.8=8.15+m | | Y=2x(5x+10) | | 21/30=x/40 | | 3(y+4)+5(y−2=) | | X2+2i=0 | | h-21=33 | | r/7.3=-8 | | 20v–9=19v-4 | | x2+-15x+-100=0 | | 7t-2=5+10 | | 6^(x-2)-6^x=222 | | (2n+2n)·(3n+3n+3n)=6^25 | | (2n+2n)·(3n+3n+3n)=625 | | 16=3y+5 | | 0.5t^2-t+0.25=0 |