If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+y-14=0
a = 3; b = 1; c = -14;
Δ = b2-4ac
Δ = 12-4·3·(-14)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-13}{2*3}=\frac{-14}{6} =-2+1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+13}{2*3}=\frac{12}{6} =2 $
| u+4=14 | | /x–24=50 | | u+4=24 | | 4(3y-4.1)=7.6 | | 46=12x+70 | | 4(3y+4.1)=7,6 | | 2=t/134 | | 4(3y-4.1)=7,6 | | 4k-k+5=8 | | 5y+18=78 | | 2=8-m | | 6.2x+8=12.34 | | 3.5x=0.42 | | x/8+34=42 | | t/0.04=7.75 | | 5-11+8=7+x-2 | | x/38=1 | | 8.05a=9.66 | | k/5=14 | | 4/10+1/10=n | | -4+x/2=7 | | 6.1=7.3y | | 6r=31 | | 3.61=7.82-d | | 3.36=v/1.5 | | 1/5(x-7)^3=500 | | 4x-12=2x+3+5 | | 173=9j | | 4x-20=-2+28 | | 31/4+11/2=n | | 4x-12+3x+6=360 | | 26.19=4.75f |