If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-26y-9=0
a = 3; b = -26; c = -9;
Δ = b2-4ac
Δ = -262-4·3·(-9)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-28}{2*3}=\frac{-2}{6} =-1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+28}{2*3}=\frac{54}{6} =9 $
| 3(5-4x)-6=6x+5 | | 0.2x-5=12 | | 9(x-2)/3=3(x+6)/9 | | -81=-9m | | -45x-2/3=x-3/4 | | x(15+0.50)=x(25+0.25) | | -6x-11+7x-5=-6 | | 3x+17=11x+9 | | 4+6n=7+2n | | (3x+4)/(2x-3)=0 | | 5x+4x-39=65-4x | | n/3-9=-21 | | x/(30)=123/5 | | 7-5x+9x=35 | | 10x—9=81 | | n/10+1=-1 | | 63-8x=21-x | | 30x+35=135 | | -3(1+4n)-6n=19-7n | | 7x+35+12=5 | | R-6=6+5r | | 1=1/5(25y-20) | | -9–26y=-3y2 | | 4(c+3)=5c-3 | | -6(p+7)-5=5p+3(4p-8) | | 34–2x=7x | | 5x/7=70/2x | | 13x-3+6x+1+68°=180 | | 2m-10+2m-12+1/2m+6=106 | | G=83.14k | | 5x/4=50/2x | | -5/8c=-20 |