If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-42y=120
We move all terms to the left:
3y^2-42y-(120)=0
a = 3; b = -42; c = -120;
Δ = b2-4ac
Δ = -422-4·3·(-120)
Δ = 3204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3204}=\sqrt{36*89}=\sqrt{36}*\sqrt{89}=6\sqrt{89}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-6\sqrt{89}}{2*3}=\frac{42-6\sqrt{89}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+6\sqrt{89}}{2*3}=\frac{42+6\sqrt{89}}{6} $
| 4x+7(-x-10)=-55 | | 1/2x(4+10)=5 | | 7/4+4m/7=69/28 | | 6x^2-14x-39=0 | | 4(3x+8)=12x+32 | | 13+x=9;-4 | | D÷8=q | | 4(5x-8)=7(x+1) | | y+6(-2)=11 | | 12=r/17 | | d-2.8÷0.2=-14 | | 6s−4=8(2+41s) | | 0.70(x+50)+0.50x=71 | | 1/2+x=5/4{1/2,3/4,1,5/4} | | 7x/5=3x/2+2 | | 1/2x(20+10)=50 | | 1(3/4p=-5/8 | | 2/4w=16 | | -x^2-2x=-3 | | (7x^2+6x)+(x^2+6x=) | | 1/2x(50+10)=100 | | 13/4p=-5/8 | | y=(2(4/5)/5) | | 18=x-7;25 | | 1/2k-(k+1/5)=1/10(k+2) | | 5x(1/2)=10 | | 0.02(y-8)+0.16y=0.08y-0.01(10) | | 25x2=5x | | (8t+30)=(-2t-16)=-22 | | 2X-7+6x=-95 | | −2(x+3)=−2(x+1)−4 | | x=−2(x+3)=−2(x+1)−4 |