If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-75=0
a = 3; b = 0; c = -75;
Δ = b2-4ac
Δ = 02-4·3·(-75)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30}{2*3}=\frac{-30}{6} =-5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30}{2*3}=\frac{30}{6} =5 $
| 10u=11u-4 | | (y-4)+6=54 | | 4b=5b-15 | | 14b-12=48 | | 4x-356=97864 | | (1+u)(4u-7)=0 | | 54w+8=162 | | 4^x+5=4^10 | | x4/19=9756 | | 162=54*w+8 | | 3b=b-16 | | 8-(6-6x)+9x=-2+12(x+1) | | 18-7+5y=11 | | 40.8=3.44u | | -4x-16=-2 | | 5w-90=0 | | 8+3x=65 | | 38x=18-48 | | 3b^2-19b=35 | | 1-8x=1x+13 | | 15r-6r=38 | | 8n+18N=4 | | 11(5-4n)=7(5-6n) | | 8-3(j-7)=-3(2-j)-j | | 0.1—2x=0.0480 | | 2n+1/3n-12=n | | 4^x=2^5x+3 | | 0=16+4(t-6) | | 8=0.005n | | 3x-1+x=65 | | 4(m+3)=-16 | | 3x-1+x+56=90 |