If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-81=0
a = 3; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·3·(-81)
Δ = 972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{972}=\sqrt{324*3}=\sqrt{324}*\sqrt{3}=18\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{3}}{2*3}=\frac{0-18\sqrt{3}}{6} =-\frac{18\sqrt{3}}{6} =-3\sqrt{3} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{3}}{2*3}=\frac{0+18\sqrt{3}}{6} =\frac{18\sqrt{3}}{6} =3\sqrt{3} $
| 4n-3=5n+4 | | 13/x=17/11 | | 7x+3(x-9)-4x+2x=23-2x | | 53=(9x) | | 7x-3=-4x+19 | | 8(m-3)=4 | | 3x+1=1+2x | | 52-2x+22x+88=180 | | 3a+1=1+2a | | 8+2.5m=4.5 | | 2x^2=-55 | | 6r^2.r=3 | | 15x-8=128-3x=180 | | 208=8(1+5k) | | 208=8(1+5k | | 3x+12+9x=180 | | 3x+9+7x+21=180 | | 5+-2n-1=6 | | 8x-7=8x-10 | | 13x-18+7x-2=180 | | 2x+4/4=3/x+7 | | 7x-5=10-13 | | 4w-24=8(w-8) | | 7(w+8)=3w+36 | | 9(p-40)=-18 | | 8x-7=8x-21 | | 10-v/4=2(v+14) | | 7x+20+3x-5=159 | | 40x+15x=27x-10x | | -3(n+2)=-3n-100 | | 28=d-12 | | 5(n+2)=6n-19 |